SPORT REALIZATION IN AGE ASPECT OF ELITE ATHLETES IN THE DISCIPLINE 100 M MEN

G. Gutev*, I. Dimova
National Sports Academy "Vassil Levski", Department "Track \& Field", Sofia, Bulgaria

Abstract

Sport realization in elite sport is of interest both for the people in the practice (athletes and coaches) and for sport theory. In athletic competitions the discipline 100 m for men has its special place as one of the most popular ones. From there is our interest in sport realization of elite sprinters in age aspect. The aim of the following study is to analyze the performance of the world elite sprinters in age aspect. For our study, we analyze top 60 athletes in the all-time rank - retired from elite sport. We use the group of retired athletes is used to created sport results models in age aspect and reveal in details tendencies in sport performance. Presented data can be used as an optimization tool for optimization of training programs for optimal sport realization in age aspect.

Key words: 100 m, men, elite athletes, sport realization

PURPOSE

Achieving high sport results and the path taken to reach them were of interest to sport professionals, but often remain behind the scenes and are not available to the general public (1, 2). The question of the appropriate age to achieve peak sport performance in sprint also remain unclear (3).

The aim of the following study is to analyze the performance of the world elite sprinters in age aspect.

By achieving the main aim of the study we will present actual information regarding the process of sport realization of elite athletes in a key athletic discipline such as 100 m for men. Also, indirectly this will add light into speed and strength abilities utilization.

METHODS

For achieving the main aim and idea of the study we accomplished the following tasks:

[^0]1. Analysis of accessible methodical literature related to studies theme.
2. Collection of research information and creation of a database.
3. Mathematical and statistical analysis of gathered information.
4. Expert analysis and conclusions for sport theory and practice.

After reviewing the available literature on the research theme, we found that the information on the topic is fragmentary.

The research database was collected using elite athletes personal sport profile in World athletics official web site presenting their best sport results year by year since in their professional sport career. In the all-time top 113 athletes 56% can be part of our study (60 athletes) who ended their professional sport career. Among the respondents we find former Olympic, World and European champions and world record holders in the studied discipline.

For the purpose of the study, we used several mathematical and statistical methods incl. descriptive statistics, frequency analysis, and
sigmal method for development of evaluation tables. All data was processed using SPSS 22.0 and Microsoft Excel software.

RESULTS

One of the main questions seeking for answers is the longevity of an elite athlete sport career. Among studied respondents (60 in total) we find
average value of 12 seasons (years) as elite athlete. This is long period for a discipline closely related to manifestation of speed abilities. The longest recorded career as elite sprinter is 24 competition seasons which is a fact worthy of respect. We find high value of variance coefficient which indicates heterogeneity in sport career longevity among respondents.

Table 1. Descriptive statistics of professional sports career longevity

Professional sports career longevity	N	Range	Minimum	Maximum	Mean		Std. Deviation	Variance (V\%)	Skewness	Kurtosis
					Statistic	Std. Error				
	60	23	1	24	12	0,52	4,03	32,69	0,03	0,72

In order to gain a complete picture of the level of sport qualification of respondents, we present the descriptive analysis (Table 2) revealing sprinters personal best sport results. Average value of personal best result is 9,91 sec., with fastest
recorded time and actual world record of 9,58 sec., and slowest recorded personal best result of $9,97 \mathrm{sec}$. All this data reveals the exclusivity of studied sample of retired from active competing athletes.

Table 2. Respondents personal best result descriptive statistics.

PB result	N	Range	Minimum	Maximum	Mean		Std. Deviation	Variance (V\%)	Skewness	Kurtosis
					Statistic	Std. Error				
	60	0,39	9,58	9,97	9,91	0,01	0,06	0,63	-2,84	12,53

Of interest for sport selection and training methodology is the origin of the best sprinters in the world. This data is presented by the help of frequency analysis in Table 3. Almost 50% of the best sprinters in the discipline 100 m , already retired from competing, come from United States, followed by significantly fewer representatives from Jamaica, Nigeria, etc.

The data presented on Table 4 deepens the analysis of sport realization in age aspect of studied athletes. It sums the information of directly connected to their performance as sprinters and sport result absolute value.

Table 3. Best sprinters nation frequency analysis (retired from elite sport).

Nation	Frequency	Percent
USA	29	48,3
Nigeria	6	10,0
Jamaica	6	10,0
Great Britain	4	6,7
Canada	3	5,0
Trinidad and Tobago	3	5,0
Australia	1	1,7
Antigua and Barbuda	1	1,7
Barbados	1	1,7
Bahamas	1	1,7
Bahrein	1	1,7
Cayman Islands	1	1,7
Ivory Coast	1	1,7
Namibia	1	1,7
Nevis	1	1,7
Total	60	100,0

GUTEV G., et al
Table 4. Descriptive statistics of sport performance.

Index	N	Range	Minimum	Maximum	Mean		Std. Deviation	Variance $(\mathbf{V} \%)$	Skewness	Kurtosis
Season in competing as elite athlete	60	23	1	24	12	0,52	4,03	32,69	0,026	0,724
Personal best result	60	0,39	9,58	9,97	9,91	0,01	0,06	0,63	$-2,839$	12,535
Weakest result as elite athlete	60	1,35	9,95	11,3	10,55	0,04	0,28	2,65	0,634	0,188
Range of sport result as elite athlete	60	1,34	0	1,34	0,64	0,04	0,27	42,88	0,618	0,041
Average sport result as elite athlete	60	0,65	9,8	10,45	10,16	0,01	0,12	1,13	0,135	1,146
Standard deviation as elite athlete	59	0,33	0,08	0,41	0,20	0,01	0,08	40,29	1,016	0,534
Variance (V\%) of sport result as elite athlete	59	0,16	0,01	0,17	0,05	0,01	0,04	85,22	1,762	2,881
Valid N (listwise)	59									

Table 5. Descriptive statistics of sport performance in age aspect.

Age	N	Range	Minimum	Maximum	Mean		Std. Deviation	Variance(V\%)	Skewness	Kurtosis
					Statistic	Std. Error				
15	2	0,79	10,51	11,30	$10,91$	0,40	0,56	5,12		
16	3	0,77	10,33	11,10	10,68	0,23	0,39	3,66	0,849	
17	10	0,68	10,27	10,95	10,56	0,07	0,23	2,14	0,752	-0,655
18	20	0,92	10,08	11,00	10,49	0,06	0,25	2,37	0,698	0,155
19	40	1,06	10,05	11,11	10,34	0,04	0,24	2,33	1,310	1,480
20	43	1,10	9,97	11,07	10,26	0,03	0,21	2,06	1,503	4,027
21	51	0,63	9,88	10,51	10,16	0,02	0,15	1,52	0,530	-0,233
22	51	0,80	9,69	10,49	10,08	0,02	0,15	1,46	0,517	1,401
23	52	0,88	9,58	10,46	10,08	0,02	0,17	1,65	0,055	0,568
24	54	0,77	9,82	10,59	10,08	0,02	0,15	1,44	1,279	2,684
25	57	1,16	9,76	10,92	10,09	0,03	0,19	1,90	1,886	5,885
26	51	0,89	9,63	10,52	10,06	0,02	0,17	1,64	0,634	1,092
27	45	0,96	9,77	10,73	10,09	0,02	0,16	1,63	1,421	4,277
28	45	1,04	9,88	10,92	10,13	0,03	0,19	1,84	1,906	6,198
29	43	1,19	9,79	10,98	10,13	0,03	0,22	2,13	1,294	4,404
30	38	1,06	9,81	10,87	10,15	0,04	0,24	2,39	1,146	1,154
31	29	0,78	9,89	10,67	10,09	0,03	0,17	1,72	1,526	3,369
32	27	0,75	9,84	10,59	10,19	0,04	0,20	1,96	0,175	-0,682
33	22	1,05	9,87	10,92	10,28	0,06	0,28	2,71	0,967	0,413
34	20	0,79	9,91	10,70	10,23	0,05	0,23	2,25	0,500	-0,804
35	13	0,44	9,94	10,38	10,12	0,04	0,15	1,53	0,562	-1,207
36	9	0,50	10,00	10,50	10,19	0,06	0,19	1,82	0,489	-1,394
37	5	1,13	9,97	11,10	10,33	0,21	0,46	4,49	1,528	1,984
38	4	0,42	9,96	10,38	10,20	0,09	0,18	1,74	-0,767	0,923
39	2	0,33	9,98	10,31	10,15	0,17	0,23	2,30		
40	1	0,00	9,93	9,93	9,93			0,00		
41	2	0,25	10,20	10,45	10,33	0,13	0,18	1,71		

The foundation of the following study is presented on Table 5. It sums all result divided by age, which is the most actual information regarding sport performance in sprinting in different age periods. According to the average sport result value the age in we must expect maximum realization of talent and accumulation of training means and methods is between 23 and 27. This is confirmed by the low values of standard deviation and variance coefficient. This statement is also supported by biggest number of observations (ranging from 45 to 57 cases). With these statements we do not deny that
in the remaining age periods cannot be expected personal best results or high level of sport performance. But based of research data this period is highlighted as the most favorable.

Figure 1 gives us easier insight regarding number of studied cases in different biological age period and the average sport result of respondents. All these backups the statements presented in the analysis above. With the drop of observed cases, we can note the level of validity of finding is also lowering.

Figure 1. Sport result average value and number of studied cases in age aspect.

Interest data is visible on Figure 2 which present the best and the weakest sport results from age aspect. We clearly see tendency of lowering both indexes until 23-24 years of age. After that is very
hard to find any tendency in movement of those indexes. After crossing 30 years of age the best sport performance, presented by minimum sport results as absolute value, is weakening.

Figure 2. Difference between best and weakest sport result registered by respondents.

The graphic presentation of variance coefficient reveals homogeneity of personal best sport result in age aspect. We find high homogeneity levels
between the results from 17 to 36 years of age. This indicates that high level sport performance can be expected between this period.

Figure 3. Variance coefficient of sport result in age aspect.

CONCLUSION

Based on the research data, we can summarize that in order to achieve top performance in the discipline 100 m for men, certain age period stand out. On the other hand, this does not preclude the top-of-the-line sport performance outside of the so called "window for maximum sport realization".

In our opinion this study must be widen with other sprint discipline to obtain more detailed information regarding performance in sprint discipline which are similar in many ways.

REFERENCES

1. Gadev, M. (2015). Smooth sprint technique (Monograph). Bolid Ins, Sofia, ISBN 978-954-394-153-7.
2. Dimova, I. (2018). Structure and content of the annual training for athletes with different qualifications in the 400-meter sprint (Dissertation). NSA, Sofia.
3. Stoykov, S., et al. (2014). Athletics, NSA PRESS, Sofia, ISBN 978-954-718-393-3.

[^0]: *Correspondence to: G. Gutev, Department "Track \& Field", National Sports Academy "Vassil Levski", Sofia, Bulgaria, grigor.gutev@gmail.com, +359889 503604

